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Lattice Boltzmann simulation of nonideal vapor-liquid flow in porous media
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A lattice-Boltzmann simulator of two-phase equilibrium and flow is presented and applications to interface
stability problems are discussed. The simulator is based on a lattice-Boltzmann model of nonideal fluids that
allows coexistence of two phases of a single substance at an explicitly defined temperature. A set of thermo-
dynamically consistent algorithms is developed to prescribe the equilibrium densities and kinematic viscosities
of the vapor and liquid phases of a van der Waals fluid and also the interfacial tension and interfacial thickness.
Flow is induced by applying either a constant macroscopic pressure gradient or an external body force.
Application to gas displacement by liquid in a pore structure showed that the simulator is capable of repro-
ducing critical flooding phenomena under strong wettability conditions, such as formation of thin films, snap-
off in narrow throats, and entrapment of the nonwetting phase.@S1063-651X~98!11103-0#

PACS number~s!: 47.55.Mh, 44.30.1v, 05.40.1j
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I. INTRODUCTION

The hydrodynamic behavior of multiphase systems
been the subject of a large number of theoretical and exp
mental investigations, not only because of its strong sc
tific interest but also because of its unusual technolog
importance, as it is directly connected to a number of mod
practical problems and applications, including soil polluti
and remediation, enhanced oil recovery, color printin
foaming, emulsion flow and stability, etc. The modeling
multiphase flow processes is an extremely difficult ta
within the classical hydrodynamics discipline owing, main
to the inherent free-boundary complication. For instance,
perimental studies@1–3# have shown that during two-phas
flow in porous media the nonwetting fluid is usually high
disconnected and exhibits a rich flow behavior that depe
on the externally imposed conditions.

The lattice-gas and lattice-Boltzmann methods, which
based on the cellular automaton concept, enjoyed rapid
velopment over the last decade, and provided an interes
alternative to traditional numerical techniques for solving
Navier-Stokes equation~see, e.g., Ref.@4#!. These numerica
algorithms can easily be implemented on parallel compu
and are expected to offer significant advancement in addr
ing complex hydrodynamic problems. The great advant
of the cellular automata methods is that they can easily si
late fluid flow with highly complex solid or free boundarie
For instance, it has been repeatedly shown in the litera
that a lattice-Boltzmann scheme can be easily adapte
simulate flow in porous media, motion of deformable bod
in complex geometries, and multiphase flow under both
namic and quasistatic conditions. Especially for thre
dimensional~3D! problems, the lattice-Boltzmann method
proven to compete with the most advanced spectral meth
of the computational hydrodynamics@5#. It is beyond the
scope of the present article to review the evolution of

*Permanent address: Faculty of Chemistry, University of So
Sofia, Bulgaria.
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cellular automata techniques and approaches. Rather, m
tion will be made of those attempts that place particular e
phasis on the use of thermodynamic arguments to suppor
lattice-gas or lattice-Boltzmann description of phase equi
rium, phase transition, and two-phase flow.

In the lattice-gas methods a discrete set of particles mo
on discrete space~lattice! in discrete time. The particles un
dergo collisions at the lattice nodes according to a certain
of collision rules. The lattice-Boltzmann method is a prob
bilistic equivalent of the lattice-gas method, where the d
crete particles are replaced with the respective values of t
mean populations. By modifying the equilibrium distribu
tions of the particle populations, the Navier-Stokes equat
is recovered at the long-wavelength limit.

In the case of multiphase flow, special care should
taken to ensure stable phase separation. Most of the exis
schemes achieve this by employing phenomenological ‘‘
tidiffusion’’ operators~see, e.g., Ref.@6#!. Surface tension is
induced by mass perturbation and redistribution algorith
@7–8#. A common weakness of these approaches is that t
are based on, practically, arbitrary momentum excha
within the interfacial region, and this producessignificant
spurious currentseven at equilibrium. As a consequenc
when flow conditions are imposed, the velocity field in t
bulk can be strongly perturbed by this exchange of mom
tum at the interface.

A different line of work was pursued by Appert and c
workers@9–12#, who modified the classical lattice-gas mod
and introduced momentum exchange between remote
ticles in order to induce phase transition. This interest
approach is implemented through the so-called ‘‘maxima
and ‘‘minimal’’ interaction models. Ifga andgb are the mo-
menta of interacting particles at prespecified distancer from
each other, then the new momenta becomega1t and gb
2t, respectively, whereutu is the amount of momentum ex
changed. In the ‘‘minimal’’ model,gaigbi t. In the ‘‘maxi-
mal’’ model, the largest possible momentum exchange
implemented among particles that may move in parallel
nonparallel directions, without violating the conservation
particle number or of the total momentum of the interacti
,
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3238 57ANGELOPOULOS, PAUNOV, BURGANOS, AND PAYATAKES
ensemble. As the distance between interacting particles
ceeds a certain value, a liquid-gas type of phase transitio
obtained. However, this approach is not thermodynamic
rigorous, the Gibbs-Thomson relations are not verified,
the Galilean invariance issue remains unresolved.

Chen and co-workers have introduced modified lattice-
@13# and lattice-Boltzmann@14–15# models of phase coexist
ence for single-component and multicomponent syste
based on nearest-neighbor interactions. Detailed analys
the single-component model has shown that the latt
Boltzmann variant conserves momentum, and that the d
sity profile in the liquid-gas interface can be expressed
terms of a temperaturelike parameter. The mutual diffusiv
in a binary mixture is calculated analytically in terms of t
concentrations of the two components and is found to
Galilean invariant. Although computationally efficient an
flexible for practical applications, this model could be furth
improved by restoring sitewise energy conservation and
fining temperature in a thermodynamically consistent m
ner.

Recently, Swift and co-workers@16–19# developed
lattice-Boltzmann methods for the modeling of isotherm
systems made up of either a vapor and a liquid phase
single species or two mutually interacting fluids. In bo
cases, the equilibrium state is associated with a free-en
functional, which, in turn, can be used for the calculation
a pressure tensor, using the Cahn-Hilliard description of n
equilibrium dynamics@20#. In the single-component cas
@16#, a nonideal equation of state for the fluid suffices
ensure phase separation below the critical point. In the
nary mixture case, two independent densities are defi
each of which is assumed to evolve according to the us
single-relaxation-time lattice-Boltzmann equation@18#. The
thermodynamic aspects of this model are discussed in v
of a simple binary-fluid model, namely, two ideal gases w
repulsive interaction. These models exhibit largely redu
spurious currents compared to other two-phase models
present reasonable kinetics of the approach to equilibriu

The present work provides an investigation of the sing
component, two-phase lattice-Boltzmann model, develo
by Swift, Osborn, and Yeomans@16#. This model deserves
special attention and further analysis, because it provide
excellent basis for explicit definition of vapor and liqu
phases within the lattice-Boltzmann framework. The che
cal potential concept is introduced into this model, and
detailed algorithm for a thermodynamically consistent p
scription of the basic equilibrium properties, namely, vap
and liquid densities, interfacial tension, and interface thi
ness, is presented. By rendering the collision relaxation-t
density dependent, thekinematic viscositiesof the liquid and
of the vapor can also be prescribed in an explicit fashi
The Gibbs-Thomson equations are satisfied with good a
racy by our simulation results for a liquid droplet at equili
rium, without having to resort to the employment of a co
rection factor. In addition, a two-phase flow simulator
developed based on this model, which is capable of pred
ing the evolution of immiscible displacement processes
porous media. It is shown that this simulator can pred
several interesting phenomena associated with displace
processes, such as the formation of a precursor wetting
@1–2#, early breakthrough, and snap-off of the nonwetti
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phase in narrow pores@3#. The combination of these phe
nomena can be responsible for poor flooding performa
and low sweeping efficiency in enhanced oil recovery a
soil remediation applications.

II. PRESCRIPTION OF THE FLUID PROPERTIES

A. Equilibrium densities

We show here how the equilibrium densities of the vap
and liquid phases of a nonideal fluid can be prescribed in
context of the lattice-Boltzmann scheme. This is achieved
recovering the respective nonideal equation of state from
conditions of thermodynamic equilibrium in an inhomog
neous system. It is well known from thermodynamics that
order for a liquid and its vapor to coexist at a given tempe
ture, they must share the same pressure and chemical p
tial:

P~r1 ,T!5P~r2 ,T!5P0~T!, ~1!

m~r1 ,T!5m~r2 ,T!5meq~T!, ~2!

wherer1 andr2 are the densities of the vapor~gas! and the
liquid, respectively, andmeq(T) is the equilibrium chemical
potential.

Let us assume that the two phases obey the van der W
equation of state,

P~r,T!5rkT/~12br!2ar2, ~3!

which corresponds to the following expression for t
chemical potential:

m~r,T!5kT ln@r/~12br!#1kT/~12br!22ar. ~4!

In Eq. ~4!, kT is the thermal energy, anda andb are the van
der Waals constants,

b51/3rc , kTc58a/27b, ~5!

with rc andTc being the critical density and critical temper
ture, respectively. At a fixed temperature (T,Tc) the two
phases can coexist at a single pressure value only,P0(T),
which is determined by the so-called Maxwell constructi
~equal areas rule! and satisfies Eq.~2!. The van der Waals
constants can be expressed in terms of the prescribed d
ties and the temperature in the following form, resulti
from algebraic manipulation of Eqs.~1!–~4!:

b5
2

r11r2
2

~12br1!~12br2!

r22r1
ln

r2~12br1!

r1~12br2!
, ~6!

a5
kT

~r11r2!~12br1!~12br2!
. ~7!

Note that Eq.~6! is a transcendental equation forb that can
be solved with no reference to the temperature. Then, fr
Eqs.~5! and~7! one can estimate how far the system is fro
the critical state at the prescribed density ratio~Fig. 1!:

T/Tc527b~r11r2!~12br1!~12br2!/8. ~8!
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B. Kinematic viscosities

Since the two-phase system is made up of a single com
ponent, special care should be taken to prescribe the visco
ties of the liquid and the vapor in a consistent manner. Th
can be accomplished by expressing the kinematic viscosityn
as a linear function of the relaxation timet of the lattice-
Boltzmann collision operator

nk5~2tk21!/8; k51,2. ~9!

One can lett depend on density through a simple expression
such as

t~r!5Ar1B, ~10!

under the obvious constraints:

t~r1!5t1 , t~r2!5t2 . ~11!

A combination of Eqs.~10! and ~11! gives

t~r!5
~t22t1!r1t1r22t2r1

r22r1
. ~12!

In this way, the two phases~liquid and vapor! can be as-
signed different kinematic viscosities,n1 and n2 , while
maintaining a continuous transition of the local viscosity an
of the relaxation constant across the interface.

C. Interfacial tension

According to the van der Waals theory of interfacial ten
sion, the total free-energy functional for a liquid-vapor sys
tem has the form

F@r~r !#5E dr @ 1
2 mu¹r~r !u21c̃„r~r !…#, ~13!

wherec̃ is the local excess of the free-energy density with
respect to the bulk phases, andm is a parameter independent

FIG. 1. Dependence of the reduced temperatureT/Tc on the
density ratior1 /r2 for a van der Waals fluid.
-
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,

d

-
-

of ¹r(r ) and higher-order derivatives. The optimal dens
distribution r(r ) that minimizes the free energy of the sy
tem is usually found by analogy with classical mechan
~see, e.g., Ref.@20#!. Thus, it can be shown, in view of th
mean-field approximation, that for aflat interface the fluid
density across the interface,r(z), satisfies the equation

mr9~z!5m~r,T!2meq~T!, ~14!

where the local excess of chemical potential can be view
as an ‘‘external force’’ in the mechanical analogue.

Using the assumption that the temperatureT is near the
critical temperatureTc , the right-hand side of Eq.~14! can
be expanded in series aroundTc andrc . Then the expression

r~z!5rc1 1
2 ~r22r1!tanh~2z/D ! ~15!

satisfies Eq.~14! with good accuracy, whereD is a measure
of the interface thickness.

Even far from the critical point, it can easily be inferre
@using Eqs.~2!, ~4!, and~7!# that the local excess of chemica
potential can be written in the form

m~r,T!2meq~T!5kT f~r!, ~16!

where

f ~r!5g~r!2g~r1!5g~r!2g~r2!, ~17!

and

g~r!5 ln
r

12br
1

1

12br
2

2r

~r11r2!~12br1!~12br2!
.

~18!

On the other hand, Eq.~15! readily gives

r8~z!5
r22r1

D

1

cosh2~2z/D !
, ~19!

and, following simple manipulations, the derivativesr8(z)
andr9(z) can be expressed as the following functions of t
local density:

r8~z!5
4

D

~r22r!~r2r1!

r22r1
, ~20!

r9~z!5
16

D2

~r22r!~r2r1!~r11r222r!

~r22r1!2 . ~21!

We see again that the second derivative,r9(z), of the mass
density profile in Eq.~15!, can be written in the form

r9~z!5A~r!/D2, ~22!

whereA is a function of the local mass density only:

A~r!5
16~r22r!~r2r1!~r11r222r!

~r22r1!2 . ~23!

Substitution of Eqs.~16! and ~22! into Eq. ~14! gives

mA~r!5D2kT f~r!, ~24!
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which provides a connection between the temperature
the desirable width of the interface. Since, in the gene
case, Eq.~15! is only an approximate solution of Eq.~14!
~for T close toTc!, which is valid locally within the interfa-
cial region, we can setkT using the following least-squar
minimization procedure:

min
kT

(
$zi %P interface

@mA„r* ~zi !…2D2kT f„r* ~zi !…#
2, ~25!

wherezi is the coordinate of the position vector at the latti
site i , in the direction normal to the interface, andr* (zi)
provides linear interpolation between the vapor and liq
densities. In fact, this is equivalent to fitting the real dens
profile with a model function, like that given by Eq.~15!.
Hence, one canprescribe the width D, of the interface, in
which case the thermal energy term should be obtained f

kT5

m (
$zi %P interface

A„r~zi !…f „r~zi !…

D2 (
$zi %P interface

f 2
„r~zi !…

. ~26!

On the other hand, the van der Waals theory gives the
lowing expression for the interfacial tension at a flat int
face:

s5mE
2`

`

r82~z!dz. ~27!

Substitution of Eq.~19! into ~27!, followed by integration,
yields the expression

m5
3Ds

2~r22r1!2 . ~28!

Equations~26! and~28! allow the direct prescription of both
the surface tensions and the interface thicknessD in the
two-phase system of interest. Once the vapor and liquid d
sitiesr1 andr2 , the surface tensions, and the widthD, are
prescribed, one can calculate the value of the parametem
from Eq. ~28! and the value of the thermal energy termkT
from Eq. ~26!. The value of the constantb can be obtained
by solving Eq.~6! numerically. Finally, the value of the con
stanta is obtained from Eq.~7!.

III. IMPLEMENTATION OF FLOW CONDITIONS

Flow conditions can be imposed in the framework of th
model through the action of either a constant pressure gr
ent or gravity. Thus, flow in thex direction, for instance, can
be induced by modifying the local pressure according to

P5P0~r,T!1x•“P ~pressure-gradient-driven flow!,
~29!

or

P5P0~r,T!2rg•x ~gravity-driven flow!, ~30!
nd
l

d
y

m

l-
-

n-

i-

whereP0(r,T) is the pressure given by the equation of state
g is the acceleration of gravity, and“P is the externally
applied pressure gradient.

IV. RESULTS AND DISCUSSION

In this section we demonstrate the applicability of the
aforementioned algorithms for prescribing fluid properties in
the context of the lattice-Boltzmann model for nonideal flu-
ids @16#. We also present two-phase equilibrium and flow
simulation results in the absence of walls as well as in th
interior of porous media.

The first test concerns the prescription of liquid and vapo
densities using the approach described in Sec. II. The he
agonal lattice is initially populated with the equilibrium den-
sities of the two phases separated by a flat interface. Th
lattice dimensions are 4003400. 23105 sites are updated
per second on an 8-cpu SGI machine. Periodic bounda
conditions are imposed on the box walls. The local densitie
are allowed to evolve according to the lattice-Boltzmann
model keeping the temperature constant. It was found th
the system becomes completely equilibrated following
20,000 time steps, at which time the density profiles wer
recorded. By calculating the local density gradients afte
equilibration, the surface tension is calculated from Eq.~27!.
The minimization procedure for the temperature estimatio
converged quite rapidly; use of only five points in Eq.~26!
yielded an error of only 0.2% in the estimation of the pre-
vailing temperature. For both density ratio values, the calcu
lated surface tension value iss50.9931023, which com-
pares very satisfactorily to the prescribed value~s51.00
31023). The density profiles are shown in Fig. 2. Again, the
calculated values of the local density~marked points! are in
excellent agreement with the values that are obtained fro
Eq. ~15! ~solid lines!. However, it was found that when very

FIG. 2. Density profiles across a gas-liquid interface. Solid
lines, Eq.~15!; symbols, simulation results.
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small density ratio values are used (,0.2) and a sharp inter-
face (D,1.5) is desired, the error may become significan
This loss of accuracy is attributed to the violation of the
assumption made in the analysis regarding the temperatu
of the two-phase system, namely, that the temperature is s
ficiently close to the critical temperature of the substanc
under consideration~see Fig. 1!. A further reason for this
deviation is the inherent discretization errors of the lattice
Boltzmann simulation.

The second test examines the consistency of the lattic
Boltzmann approach with the Laplace law, when the pre
scription algorithms of Sec. II are adopted. Again, a

FIG. 3. Laplace law test for a 2D bubble. Solid line, Laplace law
for prescribed value,s53.531023; symbols, simulation results for
two values of the interface thicknessD.

FIG. 4. Comparison of calculated liquid and gas pressure valu
~symbols! with the Gibbs-Thomson estimates~solid lines! for a liq-
uid droplet.P0 is the liquid and gas~common! pressure value for a
flat interface.
t.

re
uf-
e

-

e-
-
4003400 hexagonal lattice is used, with periodic bounda
conditions on the box walls. The formation of a 2D bubble
simulated under the action of a prescribed value of surf
tension. The pressure difference across the vapor-liquid
terface is calculated after 20,000 time steps, which w
found necessary for equilibration. Figure 3 shows that
calculated pressure difference increases in an almost lin
fashion with increasing curvature of the bubble for both v
ues of interface thickness considered. Our calculations h
shown that as the ratio of interface thickness to droplet
dius becomes larger than about 0.2, significant deviation
the calculated capillary pressure value from the theoret
one~based on Laplace law! may develop. This critical value
is, however, a function of the surface tension and the van
Waals constants for the same liquid and vapor densities.

A test of thermodynamic consistency of the model a
prescription algorithms is presented in Fig. 4, where the d
ferencesP12P0 andP22P0 plotted against the droplet cur
vature. A 4003400 grid was used; the calculated valu
~symbols! refer to two different values of interface thicknes
D56 and D58. The solid lines represent the theoretic
estimates of the same quantities according to the Gib
Thomson equations:

P15P01
r1

r22r1

s

R
, ~31a!

es

FIG. 5. Simulation of spinodal decomposition~t: time steps!
r152.8, r254.2, s52.6531023, D53, andn15n250.7.
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P25P01S 11
r1

r22r1
D s

R
. ~31b!

The agreement of the calculated values with the theor
cal ones shown in Fig. 4 is quite satisfactory. To the bes
the authors’ knowledge no previous lattice scheme has
ported this level of numerical agreement. Instead, correc
factors had to be introduced into the Gibbs-Thomson eq
tions in order for the calculated pressure values to com
with them ~see, e.g., Ref.@11#!.

Figure 5 shows the evolution of a system undergoing
phase transition. The equilibrium densities of the vapor a
liquid phases are set tor152.8 andr254.2, respectively,
and the kinematic viscosities ton15n250.7. The surface
tension is set tos52.6531023 and the effective width of
the interface,D, to three lattice units. Periodic boundar
conditions are imposed on a 70370 hexagonal lattice, which
is initially ‘‘populated’’with a uniform density,r53.62. The
initiation of the phase transition experiment is triggered
small fluctuations (61%) of the local density imposed a
random positions throughout the lattice. The first discerni
nuclei appear after about 800 time steps, and these g
progressively to droplets. The latter coalesce to larger dr
lets leading to the final separation state after 16,000 t
steps.

Two-phase flow that is induced by interface relaxation
studied next. Figures 6 and 7 present snapshots taken du
deformation of a liquid film subject to bending and squee

FIG. 6. Relaxation of liquid film initially in bending mode.r1

52.8, r254.2, s52.6531023, D55.3, andn15n250.7.
ti-
f

e-
n

a-
ly

a
d

y

e
w

p-
e

s
ing
-

ing, respectively. In both cases the interfaces relax to a
film, causing flow within the film and in the surrounding
vapor phase. It is estimated that similar relaxation times a
required for both configurations~11,000 time steps!, pro-
vided they share, initially, the same wavelength and amp
tude.

Figure 8 shows different stages of a coalescence proc
taking place between two liquid droplets. A vapor film, th
thickness of which is smaller than the interface thickne
prescribed for the experiment, initially separates the drople
The density gradients in the interface region give rise to t
development of the so-called Ostwald ‘‘ripening’’ phenom
enon and lead to complete coalescence into a droplet of v
ume equal to the sum of the volumes of the original drople

The interaction between a liquid film and a liquid drople
is simulated in Figs. 9 and 10. Depending on the relati
volumes of the two liquid bodies, different final configura
tions can be reached. In Fig. 9 the film disappears, givi
rise to a droplet larger than the original one by an amou
equal to the film volume. In Fig. 10 the film thickness in
creases by the droplet volume. The difference in the result
configurations can be explained as follows. Because of
periodic boundary conditions imposed on the wall surface
there are two minima in the free energy of the system for
given volume ratio of the two phases. These minima cor
spond to two different equilibrium shapes of the interfac
namely,circular ~droplet! andslab ~film!. Depending on the
volume ratio of the two phases, one of these minima is g

FIG. 7. Relaxation of liquid film initially in squeezing mode
r152.8, r254.2, s52.6531023, D55.3, andn15n250.7.
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bal, whereas the other one is local. The values of the volu
ratio in the two experiments are such that the global mi
mum of the free energy corresponds to acircular interfacein
the first case~Fig. 9! and aflat interfacein the second one
~Fig. 10!. A simple calculation verifies this result. Consider
periodicL3L 2D lattice, a film of thicknessh, and a droplet
of radius R. If ph/L1(pR/L)2,1, the circular geometry
will be favored, because it provides smaller interface leng
compared to that of the slab~Fig. 9!. In the opposite case, the
final configuration will be that of slab geometry~Fig. 10!.
Thanks to space discretization and the fact thatp is irratio-
nal, the case of equality in the above expression is imp
sible.

Figure 11 presents simulated snapshots of the motion
deformable bubble in a straight channel with a solid barri
The lattice is initially populated with the heavier phase~liq-
uid! and a bubble is placed close to the left channel e
No-slip boundary conditions are imposed on the chan
walls and on the barrier~see, e.g., Ref.@21#!. Periodic bound-
ary conditions are imposed on the two channel ends. In
first stage of the simulation, the bubble is given sufficie
time ~about 2000 time steps! to relax and adopt a circular
shape; then, gravity-driven flow is imposed according to E
~30! with g52.531025 acting in the negativex direction.
The Reynolds number is 0.5 and the surface tension is se
the values53.531023. It is interesting to note that the
bubble follows a pathway that drives it through the upp
opening, which is wider than the lower one by a single latti

FIG. 8. Coalescence of 2D liquid droplets.r152.8, r254.2,
s52.6531023, D55.3, andn15n250.7.
e
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s-
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t
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to
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unit and, consequently, presents a slightly smaller capill
resistance.

The two-phase flow simulator was also applied to the c
of vapor displacement by liquid in a porous medium. T
void space of the medium is represented as a collection
large pore bodies, called chambers, interconnected thro
narrow capillaries called throats. Such a representation
been repeatedly proved satisfactory for a variety of pract
materials used in chemical, physical, and biological p
cesses, such as catalysts, packed beds, oil reservoirs, m
molecule coils, etc.@22–27#. The pore network is initially
filled with vapor and att50 a liquid phase is injected from
the left face of the working sample~Fig. 12!. The liquid
displaces the vapor at a very large capillary number (
51022) and leads, eventually, to a very efficient sweep.
preferential wetting is imposed in this experiment. Howev
introduction of wettability in the system may lead to dras
changes in the displacement process. The desired wettab
conditions can be implemented by assigning a prescri
profile of chemical potentialmw(r ) to the pore walls@16# or,
equivalently, by assigning a certain profile of equilibriu
density to the boundary sitesrw(r ) that corresponds, point
wise, to mw(r ) according to Eq.~4!. In this fashion, the
simulation of flooding processes in actual hydrocarbon fie
with nonuniform wettability can be decisively facilitated
Figure 13 shows four snapshots of an imbibition simulatio
where the liquid phase is assumed to wet the pore sur

FIG. 9. Coalescence of thin liquid film with liquid drople
h/L50.1, R/L50.25, r152.8, r254.2, s52.6531023, D55.3,
andn15n250.7.
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strongly, forming a thin liquid film along the pore walls
Breakthrough is attained very quickly in this experiment; th
liquid phase advances through the pore network throug
mainly, film flow resulting in poor sweeping efficiency. The

FIG. 10. Coalescence of thick liquid film with liquid droplet.
h/L50.35, R/L50.25, r152.8, r254.2, s52.6531023, D
55.3, andn15n250.7.

FIG. 11. Motion of a deformable 2D bubble in a channel with
solid obstacle.r152.5, r254.2, s53.531023, D53, and n1

5n250.7.
h,

gradual increase of the film thickness causes, eventu
snap-off at pore throats and entrapment of a large va
quantity in pore chambers~see, also, Refs.@1,2#!. Continued
application of an external pressure gradient causes, eve
ally, condensation of the trapped vapor, progressively fr
left to right and from smaller to larger pore chambers.

V. CONCLUDING REMARKS

An algorithm for the prescription of equilibrium fluid
properties in lattice-Boltzmann simulations of two-pha
systems is presented in this work. The algorithm uses
ments from the van der Waals and mean-field theories

FIG. 12. Immiscible displacement of vapor by liquid in
chamber-and-throat pore network with no preferential wettabil
r151, r252, s51024, D53, andn15n250.7.

FIG. 13. Immiscible displacement of vapor by liquid in
chamber-and-throat pore network with the liquid wetting the so
walls. r151, r252, rw51.97,s51024, D53, andn15n250.7.
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liquid-vapor systems and provides useful expressions for
prescription of equilibrium densities, kinematic viscositie
and interfacial tension. Several simulation tests were run
ing the pioneering lattice-Boltzmann model for nonide
gases by Swift, Osborn, and Yoemans@16#. The algorithm
proved very efficient and accurate in prescribing the afo
mentioned fluid properties, provided that the thickness of
interface between the vapor and the liquid is larger tha
critical value~typically >1.5 lattice units!.

It was found that the Gibbs-Thomson equations are sa
fied with good accuracy by our simulation results for a liqu
droplet at equilibrium. Such an agreement between ca
lated and theoretical pressure values is achieved for the
time by a lattice model and provides an additional argum
in support of not only the consistency of the model w
thermodynamics, but also the prescription algorithm that w
introduced in this work.

The lattice-Boltzmann simulator was applied to two-pha
flow problems in simple geometries and in pore networks
was found that the simulator can predict several two-ph
flow phenomena of critical significance in displacement
plications, such as formation of advancing wetting film a
early breakthrough under strong wettability conditions, fi
growth and snap off in throats, vapor condensation in p
yn
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chambers, and wettability-dependent sweeping efficiency
waterfloods.

Some thoughts regarding Galilean invariance are in ord
Possible lack of Galilean invariance in the nonideal lattic
Boltzmann model may be due to the appearance in the
cous term of the Navier-Stokes equation of a dens
dependent quantity, namely, the derivative of the press
with respect to density@19#. However, careful analysis o
this quantity has shown that it can be rendered negligib
especially in the near-critical region, provided that the app
priate choices of van der Waals constants and fluid dens
are made. Moreover, under typical field conditions in hyd
carbon recovery and land contamination applications,
pertinent capillary number is sufficiently low (10210– 1028)
for this term to be insignificant.
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