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Lattice Boltzmann simulation of nonideal vapor-liquid flow in porous media
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A lattice-Boltzmann simulator of two-phase equilibrium and flow is presented and applications to interface
stability problems are discussed. The simulator is based on a lattice-Boltzmann model of nonideal fluids that
allows coexistence of two phases of a single substance at an explicitly defined temperature. A set of thermo-
dynamically consistent algorithms is developed to prescribe the equilibrium densities and kinematic viscosities
of the vapor and liquid phases of a van der Waals fluid and also the interfacial tension and interfacial thickness.
Flow is induced by applying either a constant macroscopic pressure gradient or an external body force.
Application to gas displacement by liquid in a pore structure showed that the simulator is capable of repro-
ducing critical flooding phenomena under strong wettability conditions, such as formation of thin films, snap-
off in narrow throats, and entrapment of the nonwetting phig&£063-651X98)11103-0

PACS numbg(s): 47.55.Mh, 44.30tv, 05.40:|

I. INTRODUCTION cellular automata techniques and approaches. Rather, men-
tion will be made of those attempts that place particular em-
The hydrodynamic behavior of multiphase systems haphasis on the use of thermodynamic arguments to support the
been the subject of a large number of theoretical and experlattice-gas or lattice-Boltzmann description of phase equilib-
mental investigations, not only because of its strong scienrdum, phase transition, and two-phase flow.
tific interest but also because of its unusual technological In the lattice-gas methods a discrete set of particles moves
importance, as it is directly connected to a number of moderion discrete spacéattice) in discrete time. The particles un-
practical problems and applications, including soil pollutiondergo collisions at the lattice nodes according to a certain set
and remediation, enhanced oil recovery, color printing,of collision rules. The lattice-Boltzmann method is a proba-
foaming, emulsion flow and stability, etc. The modeling of bilistic equivalent of the lattice-gas method, where the dis-
multiphase flow processes is an extremely difficult taskcrete particles are replaced with the respective values of their
within the classical hydrodynamics discipline owing, mainly, mean populations. By modifying the equilibrium distribu-
to the inherent free-boundary complication. For instance, extions of the particle populations, the Navier-Stokes equation
perimental studiefl—3] have shown that during two-phase is recovered at the long-wavelength limit.
flow in porous media the nonwetting fluid is usually highly In the case of multiphase flow, special care should be
disconnected and exhibits a rich flow behavior that dependiken to ensure stable phase separation. Most of the existing
on the externally imposed conditions. schemes achieve this by employing phenomenological “an-
The lattice-gas and lattice-Boltzmann methods, which ardidiffusion” operators(see, e.g., Ref6]). Surface tension is
based on the cellular automaton concept, enjoyed rapid dérduced by mass perturbation and redistribution algorithms
velopment over the last decade, and provided an interesting—8]. A common weakness of these approaches is that they
alternative to traditional numerical techniques for solving theare based on, practically, arbitrary momentum exchange
Navier-Stokes equatiofsee, e.g., Ref4]). These numerical within the interfacial region, and this producsgnificant
algorithms can easily be implemented on parallel computerspurious currentseven at equilibrium. As a consequence,
and are expected to offer significant advancement in addresgsen flow conditions are imposed, the velocity field in the
ing complex hydrodynamic problems. The great advantag®ulk can be strongly perturbed by this exchange of momen-
of the cellular automata methods is that they can easily simuum at the interface.
late fluid flow with highly complex solid or free boundaries. A different line of work was pursued by Appert and co-
For instance, it has been repeatedly shown in the literaturevorkers[9—12], who modified the classical lattice-gas model
that a lattice-Boltzmann scheme can be easily adapted tand introduced momentum exchange between remote par-
simulate flow in porous media, motion of deformable bodiesticles in order to induce phase transition. This interesting
in complex geometries, and multiphase flow under both dyapproach is implemented through the so-called “maximal”
namic and quasistatic conditions. Especially for three-and “minimal” interaction models. Iig, andg, are the mo-
dimensional3D) problems, the lattice-Boltzmann method is menta of interacting particles at prespecified distanfrem
proven to compete with the most advanced spectral method=ach other, then the new momenta becogget and g,
of the computational hydrodynami¢§]. It is beyond the —t, respectively, wherdt| is the amount of momentum ex-
scope of the present article to review the evolution of thechanged. In the “minimal” modelg,ligylit. In the “maxi-
mal” model, the largest possible momentum exchange is
implemented among particles that may move in parallel or
*Permanent address: Faculty of Chemistry, University of Sofianonparallel directions, without violating the conservation of
Sofia, Bulgaria. particle number or of the total momentum of the interacting
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ensemble. As the distance between interacting particles ephase in narrow pore3]. The combination of these phe-
ceeds a certain value, a liquid-gas type of phase transition isomena can be responsible for poor flooding performance
obtained. However, this approach is not thermodynamicallyand low sweeping efficiency in enhanced oil recovery and
rigorous, the Gibbs-Thomson relations are not verified, angoil remediation applications.
the Galilean invariance issue remains unresolved.

Chen and co-workers have introduced modified lattice-gas  1I. PRESCRIPTION OF THE FLUID PROPERTIES
[13] and lattice-Boltzmanfil4—15 models of phase coexist-
ence for single-component and multicomponent systems
based on nearest-neighbor interactions. Detailed analysis of We show here how the equilibrium densities of the vapor
the single-component model has shown that the latticeand liquid phases of a nonideal fluid can be prescribed in the
Boltzmann variant conserves momentum, and that the dergontext of the lattice-Boltzmann scheme. This is achieved by
sity profile in the liquid-gas interface can be expressed ifecovering the respective nonideal equation of state from the
terms of a temperaturelike parameter. The mutual diffusivityconditions of thermodynamic equilibrium in an inhomoge-
in a binary mixture is calculated analytically in terms of the Neous system. It is well known from thermodynamics that in
concentrations of the two components and is found to b@rder for a liquid and its vapor to coexist at a given tempera-
Galilean invariant. Although computationally efficient and ture, they must share the same pressure and chemical poten-
flexible for practical applications, this model could be furthertial:
improved by restoring sitewise energy conservation and de-

A. Equilibrium densities

fining temperature in a thermodynamically consistent man- P(p1,T)=P(p2,T)=Po(T), @
ner.
Recently, Swift and co-workerd16—19 developed #(p1, T)=pu(p2,T)= ped T), @

lattice-Boltzmann methods for the modeling of isothermal
systems made up of either a vapor and a liquid phase of
single species or two mutually interacting fluids. In both
cases, the equilibrium state is associated with a free-enerdgp
functional, which, in turn, can be used for the calculation of
a pressure tensor, using the Cahn-Hilliard description of non
equilibrium dynamics[20]. In the single-component case

[16], a nonideal equation of state for the fluid suffices to

ensure phase separation below the critical point. In the bi-

nary mixture case, two independent densities are define&vﬁéﬂicgfggf’eﬁgﬁs to the following expression for the

each of which is assumed to evolve according to the usual
single-relaxation-time lattice-Boltzmann equatigd8]. The TV=KT Inlo0/(1—bp)1+KT/(1—bp)—2a 4
thermodynamic aspects of this model are discussed in view #(p.T) ol Pl ( p) P-4
of a simple binary-fluid model, namely, two ideal gases with,,, Eq. (4), kT is the thermal energy
repulsive interaction. These models exhibit largely reduceqio, \waals constants '
spurious currents compared to other two-phase models ande ’
present reasonable kinetics of the approach to equilibrium. b=1/3p,, kT,=8a/27b (5)

The present work provides an investigation of the single- ¢ ¢ '
component, two-phase lattice-Boltzmann model, developeg;t, , andT, being the critical density and critical tempera-
by Swift, Osborn, and Yeomar{46]. This model deserves o “regpectively. At a fixed temperatur<(T,) the two
special attention and further analysis, because it provides aﬁhases can coexist at a single pressure value GWgT)
excellent basis for explicit definition of vapor and liquid \pich is determined by the so-called Maxwell construction
phases within the lattice-Boltzmann framework. The Chemi'(equal areas rujeand satisfies Eq2). The van der Waals
cal potential concept is introduced into this model, and g nstants can be expressed in terms of the prescribed densi-

herep, andp, are the densities of the vap@gas and the
iquid, respectively, ango(T) is the equilibrium chemical
tential.

Let us assume that the two phases obey the van der Waals
equation of state,

P(p,T)=pkT/(1-bp)—ap?, ()

aralandb are the van

detailed algorithm for a thermodynamically consistent Preévies and the temperature in the following form, resulting
scription of the basic equilibrium properties, namely, vaporg. ., algebraic manipulation of Eq&l)—(4): '

and liquid densities, interfacial tension, and interface thick-

ness, is presented. By rendering the collision relaxation-time _ _ _

density dependent, thHenematic viscositiesf the liquid and b= 2 (1~bpy)(1~bpo) In pa(l bpl), (6)

of the vapor can also be prescribed in an explicit fashion. p1tp2 P27 P1 p1(1=Dbps)

The Gibbs-Thomson equations are satisfied with good accu-

racy by our simulation results for a liquid droplet at equilib- a= KT @)
rium, without having to resort to the employment of a cor- (p1+p2)(1—bp)(1—bp,y)"

rection factor. In addition, a two-phase flow simulator is

developed based on this model, which is capable of predictNote that Eq.(6) is a transcendental equation flerthat can

ing the evolution of immiscible displacement processes irbe solved with no reference to the temperature. Then, from
porous media. It is shown that this simulator can predictEgs.(5) and(7) one can estimate how far the system is from
several interesting phenomena associated with displacemettte critical state at the prescribed density rdfa. 1):
processes, such as the formation of a precursor wetting film

[1-2], early breakthrough, and snap-off of the nonwetting TIT,=270(p1+p2)(1—bp1)(1—bp,)/8. (8
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100 of Vp(r) and higher-order derivatives. The optimal density
’ distribution p(r) that minimizes the free energy of the sys-
tem is usually found by analogy with classical mechanics

0.95 (see, e.g., Ref.20]). Thus, it can be shown, in view of the
mean-field approximation, that for féat interface the fluid
o density across the interfacg(z), satisfies the equation
~ 0.90
= mp"(2)=pu(p,T) = ped T), (14)
(2
é 085 where the local excess of chemical potential can be viewed
2 as an “external force” in the mechanical analogue.
E 0.80 Using the assumption that the temperatlirés near the
3 ’ critical temperaturel ., the right-hand side of Eq14) can
32 be expanded in series aroufigandp.. Then the expression
2 0.75 1
p(2)=pct+32(p2—p1)tanh(2z/D) (15
0.70 - ! s ! - L ‘ . - satisfies Eq(14) with good accuracy, wher® is a measure

00 02 04 08 08 19 of the interface thickness.

Density ratio, p,/p, Even far from the critical point, it can easily be inferred

[using Egs(2), (4), and(7)] that the local excess of chemical
FIG. 1. Dependence of the reduced temperaflif€, on the potential can be written in the form

density ratiop, /p, for a van der Waals fluid.

1(p.T)— ped T)=KTH(p), (16)
B. Kinematic viscosities
. . . where
Since the two-phase system is made up of a single com-
ponent, spe;mal care should be 'gaken to p_rescrlbe the viscosi- f(p)=9(p)—9(p1)=9(p)—9(p2), (17)
ties of the liquid and the vapor in a consistent manner. This
can be accomplished by expressing the kinematic viscesity gnd
as a linear function of the relaxation timeof the lattice-
Boltzmann collision operator (0)=I p N 1 2p
g(p)=In— — — — .
ne=02n—1)/8;, k=1,2. (9) 1-bp 1-bp (p1tp2)(1—bp)(1 bP2()18)
One can letr depend on density through a simple eXPressiony w0 other hand, Eq15) readily gives
such as
- 1
7(p)=Ap+B, (10) oy P2 P
p'(2) D cosh(2z/D)’ (19

under the obvious constraints:

and, following simple manipulations, the derivativeYz)
m(p1)=71, T(p2)="1>. (1D andp”(2) can be expressed as the following functions of the

A combination of Eqs(10) and(11) gives local density:
4 (p2—p)(p—p1)
(12— T1)p~+ T1p2— T2p1 ") —— " -7 20
(p)= - . (12 PSS e @0
[ ]

In this way, the two phasediquid and vapoy can be as- "(2)= 16 (p2—p)(p—p1) (P2t p2—2p) 21)
signed different kinematic viscosities;; and v,, while p D? (po—p1)? '
maintaining a continuous transition of the local viscosity and . o
of the relaxation constant across the interface. We see again that the second derivatiw§z), of the mass

density profile in Eq(15), can be written in the form
C. Interfacial tension "
. _ _ p"(2)=A(p)/D?, (22)
According to the van der Waals theory of interfacial ten-

sion, the total free-energy functional for a liquid-vapor sys-whereA is a function of the local mass density only:
tem has the form

Alp) 16(p,—p)(p—p1)(p1t+p2—2p)
F[p(r)]=f dr[3m|Vp(r)|?+ g(p(r)], (13 (2= p1)°

Substitution of Eqs(16) and(22) into Eq. (14) gives

(23

wherez is the local excess of the free-energy density with
respect to the bulk phases, amds a parameter independent mA(p)=D?kTf(p), (24
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which provides a connection between the temperature an
the desirable width of the interface. Since, in the genera
case, Eq(15) is only an approximate solution of E¢l4)

(for T close toT,), which is valid locally within the interfa-
cial region, we can setT using the following least-square
minimization procedure:

min > [MA(p*(z))—D3kTf(p*(z))]?% (25

kT {z}einterface

wherez; is the coordinate of the position vector at the lattice
site i, in the direction normal to the interface, apd(z)
provides linear interpolation between the vapor and liquid
densities. In fact, this is equivalent to fitting the real density
profile with a model function, like that given by E¢L5).
Hence, one camprescribe the width D of the interface, in
which case the thermal energy term should be obtained fror

Density, p

m > Alp((z)f(p(z)) o
{z;} einterface z (in lattice units)
kT= . (26)
D? E fz(P(Zi)) FIG. 2. Density profiles across a gas-liquid interface. Solid
{z} einterface lines, Eq.(15); symbols, simulation results.

On the other hand, the van der Waals theory gives the fol- _ . .
lowing expression for the interfacial tension at a flat inter-wherePy(p, T) is the pressure given by the equation of state,
face: g is the acceleration of gravity, andP is the externally

applied pressure gradient.

ozmj p'?(2)dz. (27
IV. RESULTS AND DISCUSSION
Substitution of Eq:(19) into (27), followed by integration, In this section we demonstrate the applicability of the
yields the expression aforementioned algorithms for prescribing fluid properties in
the context of the lattice-Boltzmann model for nonideal flu-
m= 3Da (28) ids [16]. We also present two-phase equilibrium and flow
2(pa—p1)?” simulation results in the absence of walls as well as in the

interior of porous media.
Equations(26) and(28) allow the direct prescription of both The first test concerns the prescription of liquid and vapor
the surface tensiowr and the interface thickneds in the  densities using the approach described in Sec. Il. The hex-
two-phase system of interest. Once the vapor and liquid deragonal lattice is initially populated with the equilibrium den-
sitiesp; andp-,, the surface tensios, and the widthD, are  sities of the two phases separated by a flat interface. The
prescribed, one can calculate the value of the paranmeter lattice dimensions are 460400. 2x 10° sites are updated
from Eq. (28) and the value of the thermal energy tekm per second on an 8-cpu SGI machine. Periodic boundary
from Eq. (26). The value of the constaft can be obtained conditions are imposed on the box walls. The local densities
by solving Eq.(6) numerically. Finally, the value of the con- are allowed to evolve according to the lattice-Boltzmann
stanta is obtained from Eq(7). model keeping the temperature constant. It was found that
the system becomes completely equilibrated following
20,000 time steps, at which time the density profiles were
recorded. By calculating the local density gradients after
Flow conditions can be imposed in the framework of thisequilibration, the surface tension is calculated from 4.
model through the action of either a constant pressure gradiFhe minimization procedure for the temperature estimation
ent or gravity. Thus, flow in th& direction, for instance, can converged quite rapidly; use of only five points in Eg6)
be induced by modifying the local pressure according to yielded an error of only 0.2% in the estimation of the pre-
vailing temperature. For both density ratio values, the calcu-
P=Py(p,T)+x-VP (pressure-gradient-driven flow lated surface tension value is=0.99x 10" 3, which com-
(29 pares very satisfactorily to the prescribed valige=1.00
X 1073). The density profiles are shown in Fig. 2. Again, the
or calculated values of the local densiiyparked pointsare in
excellent agreement with the values that are obtained from
P=Py(p,T)—pg-x (gravity-driven flow, (30) Eq. (15 (solid lines. However, it was found that when very

lll. IMPLEMENTATION OF FLOW CONDITIONS
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FIG. 3. Laplace law test for a 2D bubble. Solid line, Laplace law

for prescribed valuay = 3.5X 1073 symbols, simulation results for
two values of the interface thickneBs

small density ratio values are used@.2) and a sharp inter-
face D <1.5) is desired, the error may become significant.
This loss of accuracy is attributed to the violation of the
assumption made in the analysis regarding the temperatu
of the two-phase system, namely, that the temperature is su
ficiently close to the critical temperature of the substance
under consideratiorisee Fig. 1 A further reason for this FIG. 5. Simulation of spinodal decompositi¢h time steps
deviation is the inherent discretization errors of the lattice-p;=2.8,p,=4.2,0=2.65x10"%, D=3, andv;=1,=0.7.

Boltzmann simulation.

B ;It'he second test ﬁxa_rphintis tEe (I:onsiftency r?f tht?] latticern 0, 400 hexagonal lattice is used, with periodic boundary
oltzmann approach wi € Laplace faw, when the pré<,jitions on the box walls. The formation of a 2D bubble is

scription algorithms of Sec. Il are adopted. Again,

3.0
xlO.

254 0=3.5x10"
o , o D=6

liquid

simulated under the action of a prescribed value of surface
tension. The pressure difference across the vapor-liquid in-
terface is calculated after 20,000 time steps, which were
found necessary for equilibration. Figure 3 shows that the
calculated pressure difference increases in an almost linear
fashion with increasing curvature of the bubble for both val-
ues of interface thickness considered. Our calculations have
shown that as the ratio of interface thickness to droplet ra-
dius becomes larger than about 0.2, significant deviation of
the calculated capillary pressure value from the theoretical
one(based on Laplace Igwnay develop. This critical value

is, however, a function of the surface tension and the van der
Waals constants for the same liquid and vapor densities.

A test of thermodynamic consistency of the model and
prescription algorithms is presented in Fig. 4, where the dif-
ferenced?; — P, andP,— P, plotted against the droplet cur-
vature. A 400400 grid was used; the calculated values
(symbols refer to two different values of interface thickness,
D=6 andD=8. The solid lines represent the theoretical
estimates of the same quantities according to the Gibbs-
Thomson equations:

FIG. 4. Comparison of calculated liquid and gas pressure values

(symbols with the Gibbs-Thomson estimatésolid lineg for a lig-

uid droplet.Py is the liquid and gagcommon pressure value for a

flat interface.

Py=Po+ —1—

’ 31
P2 P1§' (313
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=1 =1250 =1 =750

=50 +=3500 =50 1=2000

=500 t=10000 1=250 t=10000

FIG. 6. Relaxation of "(]‘:o!id film initially in bending mode, FIG. 7. Relaxation of liquid film initially in squeezing mode.
:2.8,p2:4.2,o:2.65>< 10 °, D=5.3, andv1: V2:O.7. P1:2-8,P2=4-2, o=72.65% 10_31 D=5.3, andv1:v2:0.7.
P,=Py+|1+ P1 2_ (31b) ing, respeptively. In both cases the interfaces relax to a flat
po—p1/ R film, causing flow within the film and in the surrounding

vapor phase. It is estimated that similar relaxation times are

The agreement of the calculated values with the theoretirequired for both configuration&l11,000 time steps pro-
cal ones shown in Fig. 4 is quite satisfactory. To the best ofided they share, initially, the same wavelength and ampli-
the authors’ knowledge no previous lattice scheme has reaude.
ported this level of numerical agreement. Instead, correction Figure 8 shows different stages of a coalescence process,
factors had to be introduced into the Gibbs-Thomson equaaking place between two liquid droplets. A vapor film, the
tions in order for the calculated pressure values to complyhickness of which is smaller than the interface thickness
with them(see, e.g., Ref.11]). prescribed for the experiment, initially separates the droplets.

Figure 5 shows the evolution of a system undergoing arhe density gradients in the interface region give rise to the
phase transition. The equilibrium densities of the vapor andlevelopment of the so-called Ostwald “ripening” phenom-
liquid phases are set tp;=2.8 andp,=4.2, respectively, enon and lead to complete coalescence into a droplet of vol-
and the kinematic viscosities te;=v,=0.7. The surface ume equal to the sum of the volumes of the original droplets.
tension is set tar=2.65<10"2 and the effective width of The interaction between a liquid film and a liquid droplet
the interface,D, to three lattice units. Periodic boundary is simulated in Figs. 9 and 10. Depending on the relative
conditions are imposed on a XJ0 hexagonal lattice, which volumes of the two liquid bodies, different final configura-
is initially “populated”with a uniform densityp=3.62. The tions can be reached. In Fig. 9 the film disappears, giving
initiation of the phase transition experiment is triggered byrise to a droplet larger than the original one by an amount
small fluctuations £1%) of the local density imposed at equal to the film volume. In Fig. 10 the film thickness in-
random positions throughout the lattice. The first discerniblecreases by the droplet volume. The difference in the resulting
nuclei appear after about 800 time steps, and these growonfigurations can be explained as follows. Because of the
progressively to droplets. The latter coalesce to larger dropperiodic boundary conditions imposed on the wall surfaces,
lets leading to the final separation state after 16,000 timg¢here are two minima in the free energy of the system for a
steps. given volume ratio of the two phases. These minima corre-

Two-phase flow that is induced by interface relaxation isspond to two different equilibrium shapes of the interface,
studied next. Figures 6 and 7 present snapshots taken durimgmely,circular (dropley andslab (film). Depending on the
deformation of a liquid film subject to bending and squeez-volume ratio of the two phases, one of these minima is glo-
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t=1 =750 t=1 t=2000

=50 =3000 t=1000 1=4000

=250 1=20000 1=1500 =20000

FIG. 8. Coalescence of 2D liquid droplets;=2.8, p,=4.2, FIG. 9. Coalescence of thin liquid film with liquid droplet.

0=2.65x10 %, D=5.3, andv;=v,=0.7. h/L=0.1, RIL=0.25, p;=2.8, p,=4.2, 0=2.65x 10 3, D=5.3,
andv;=v,=0.7.

bal, whereas the other one is local. The values of the volume
ratio in the two experiments are such that the global mini-unit and, consequently, presents a slightly smaller capillary
mum of the free energy corresponds toi@ular interfacein  resistance.
the first casdFig. 9 and aflat interfacein the second one The two-phase flow simulator was also applied to the case
(Fig. 10. A simple calculation verifies this result. Consider a of vapor displacement by liquid in a porous medium. The
periodicL X L 2D lattice, a film of thicknesh, and a droplet void space of the medium is represented as a collection of
of radiusR. If wh/L+ (7wR/L)2<1, the circular geometry large pore bodies, called chambers, interconnected through
will be favored, because it provides smaller interface lengtiharrow capillaries called throats. Such a representation has
compared to that of the sldBig. 9. In the opposite case, the been repeatedly proved satisfactory for a variety of practical
final configuration will be that of slab geomet(¥ig. 10. materials used in chemical, physical, and biological pro-
Thanks to space discretization and the fact thas irratio-  cesses, such as catalysts, packed beds, oil reservoirs, macro-
nal, the case of equality in the above expression is imposmolecule coils, etc[22—27. The pore network is initially
sible. filled with vapor and at=0 a liquid phase is injected from

Figure 11 presents simulated snapshots of the motion of the left face of the working sampléig. 12. The liquid
deformable bubble in a straight channel with a solid barrierdisplaces the vapor at a very large capillary number (Ca
The lattice is initially populated with the heavier phdtg- =10"?) and leads, eventually, to a very efficient sweep. No
uid) and a bubble is placed close to the left channel endpreferential wetting is imposed in this experiment. However,
No-slip boundary conditions are imposed on the channeintroduction of wettability in the system may lead to drastic
walls and on the barrigsee, e.g., Ref21]). Periodic bound- changes in the displacement process. The desired wettability
ary conditions are imposed on the two channel ends. In theonditions can be implemented by assigning a prescribed
first stage of the simulation, the bubble is given sufficientprofile of chemical potentialk,,(r) to the pore wall$16] or,
time (about 2000 time stepgo relax and adopt a circular equivalently, by assigning a certain profile of equilibrium
shape; then, gravity-driven flow is imposed according to Eqdensity to the boundary sitgs,(r) that corresponds, point-
(30) with g=2.5x10"° acting in the negativex direction.  wise, to u,(r) according to Eq.(4). In this fashion, the
The Reynolds number is 0.5 and the surface tension is set ®mulation of flooding processes in actual hydrocarbon fields
the valuec=3.5x10"3. It is interesting to note that the with nonuniform wettability can be decisively facilitated.
bubble follows a pathway that drives it through the upperFigure 13 shows four snapshots of an imbibition simulation,
opening, which is wider than the lower one by a single latticewhere the liquid phase is assumed to wet the pore surface
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=750

t=1500 FIG. 12. Immiscible displacement of vapor by liquid in a
chamber-and-throat pore network with no preferential wettability.

i p1=1,p,=2,0=10*% D=3, andy,=v,=0.7.

ELROAIE

gradual increase of the film thickness causes, eventually,
snap-off at pore throats and entrapment of a large vapor
guantity in pore chambersee, also, Ref$1,2]). Continued
application of an external pressure gradient causes, eventu-
ally, condensation of the trapped vapor, progressively from
left to right and from smaller to larger pore chambers.

FIG. 10. Coalescence of thick liquid film with liquid droplet.
h/L=0.35, R/IL=0.25, p;=2.8, p,=4.2, 0=2.65x10"3, D V. CONCLUDING REMARKS
=5.3, andv,;=v,=0.7.

An algorithm for the prescription of equilibrium fluid
strongly, forming a thin liquid film along the pore walls. properties in lattice-Boltzmann simulations of two-phase
Breakthrough is attained very quickly in this experiment; thesystems is presented in this work. The algorithm uses ele-
liguid phase advances through the pore network throughmnents from the van der Waals and mean-field theories for

mainly, film flow resulting in poor sweeping efficiency. The

=20000

=1 t=16000

t=40000 t=130000

t=10000 1=32000

FIG. 11. Motion of a deformable 2D bubble in a channel witha  FIG. 13. Immiscible displacement of vapor by liquid in a
solid obstacle.p;=2.5, p,=4.2, 0=3.5x10 %, D=3, and v, chamber-and-throat pore network with the liquid wetting the solid
=v,=0.7. walls. p;=1, p,=2, p,=1.97,0=10"% D=3, andv;=r,=0.7.
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liquid-vapor systems and provides useful expressions for thehambers, and wettability-dependent sweeping efficiency of
prescription of equilibrium densities, kinematic viscosities,waterfloods.
and interfacial tension. Several simulation tests were run us- Some thoughts regarding Galilean invariance are in order.
ing the pioneering lattice-Boltzmann model for nonideal Possible lack of Galilean invariance in the nonideal lattice-
gases by Swift, Osborn, and Yoemdi$]. The algorithm  Boltzmann model may be due to the appearance in the vis-
proved very efficient and accurate in prescribing the aforegoys term of the Navier-Stokes equation of a density-
mentioned fluid properties, provided that the thickness of th%iependent quantity, namely, the derivative of the pressure
interface between the vapor and the liquid is larger than &ith respect to density19]. However, careful analysis of
critical value(typically =1.5 lattice units. this quantity has shown that it can be rendered negligible,
It was found that the Gibbs-Thomson equations are satisespecially in the near-critical region, provided that the appro-
fied with good accuracy by our simulation results for a liquid priate choices of van der Waals constants and fluid densities
droplet at equilibrium. Such an agreement between calcuare made. Moreover, under typical field conditions in hydro-
lated and theoretical pressure values is achieved for the fir%rbon recovery and land contamination app”cationsl the

time by a lattice model and provides an additional argumenpertinent capillary number is sufficiently low (18°—1078)
in support of not only the consistency of the model with for this term to be insignificant.

thermodynamics, but also the prescription algorithm that was
introduced in this work.

The lattice-Boltzmann simulator was applied to two-phase
flow problems in simple geometries and in pore networks. It
was found that the simulator can predict several two-phase This work was supported by EC, Project No. BRE2-
flow phenomena of critical significance in displacement ap-CT92-0191, and by the Institute of Chemical Engineering
plications, such as formation of advancing wetting film andand High Temperature Chemical Processes. Thanks are due
early breakthrough under strong wettability conditions, filmto A. Baxevanis for his contribution to the development of
growth and snap off in throats, vapor condensation in por¢he CA graphics.
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